| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304 |
- # ##### BEGIN GPL LICENSE BLOCK #####
- #
- # This program is free software; you can redistribute it and/or
- # modify it under the terms of the GNU General Public License
- # as published by the Free Software Foundation; either version 2
- # of the License, or (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU General Public License for more details.
- #
- # You should have received a copy of the GNU General Public License
- # along with this program; if not, write to the Free Software Foundation,
- # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- #
- # ##### END GPL LICENSE BLOCK #####
-
- import bpy
- import io
- import math
- import os
- import copy
- from math import pi, cos, sin, tan, sqrt
- from mathutils import Vector, Matrix
- from copy import copy
-
- # -----------------------------------------------------------------------------
- # Atom, stick and element data
-
-
- # This is a list that contains some data of all possible elements. The structure
- # is as follows:
- #
- # 1, "Hydrogen", "H", [0.0,0.0,1.0], 0.32, 0.32, 0.32 , -1 , 1.54 means
- #
- # No., name, short name, color, radius (used), radius (covalent), radius (atomic),
- #
- # charge state 1, radius (ionic) 1, charge state 2, radius (ionic) 2, ... all
- # charge states for any atom are listed, if existing.
- # The list is fixed and cannot be changed ... (see below)
-
- ATOM_CLUSTER_ELEMENTS_DEFAULT = (
- ( 1, "Hydrogen", "H", ( 1.0, 1.0, 1.0, 1.0), 0.32, 0.32, 0.79 , -1 , 1.54 ),
- ( 2, "Helium", "He", ( 0.85, 1.0, 1.0, 1.0), 0.93, 0.93, 0.49 ),
- ( 3, "Lithium", "Li", ( 0.8, 0.50, 1.0, 1.0), 1.23, 1.23, 2.05 , 1 , 0.68 ),
- ( 4, "Beryllium", "Be", ( 0.76, 1.0, 0.0, 1.0), 0.90, 0.90, 1.40 , 1 , 0.44 , 2 , 0.35 ),
- ( 5, "Boron", "B", ( 1.0, 0.70, 0.70, 1.0), 0.82, 0.82, 1.17 , 1 , 0.35 , 3 , 0.23 ),
- ( 6, "Carbon", "C", ( 0.56, 0.56, 0.56, 1.0), 0.77, 0.77, 0.91 , -4 , 2.60 , 4 , 0.16 ),
- ( 7, "Nitrogen", "N", ( 0.18, 0.31, 0.97, 1.0), 0.75, 0.75, 0.75 , -3 , 1.71 , 1 , 0.25 , 3 , 0.16 , 5 , 0.13 ),
- ( 8, "Oxygen", "O", ( 1.0, 0.05, 0.05, 1.0), 0.73, 0.73, 0.65 , -2 , 1.32 , -1 , 1.76 , 1 , 0.22 , 6 , 0.09 ),
- ( 9, "Fluorine", "F", ( 0.56, 0.87, 0.31, 1.0), 0.72, 0.72, 0.57 , -1 , 1.33 , 7 , 0.08 ),
- (10, "Neon", "Ne", ( 0.70, 0.89, 0.96, 1.0), 0.71, 0.71, 0.51 , 1 , 1.12 ),
- (11, "Sodium", "Na", ( 0.67, 0.36, 0.94, 1.0), 1.54, 1.54, 2.23 , 1 , 0.97 ),
- (12, "Magnesium", "Mg", ( 0.54, 1.0, 0.0, 1.0), 1.36, 1.36, 1.72 , 1 , 0.82 , 2 , 0.66 ),
- (13, "Aluminium", "Al", ( 0.74, 0.65, 0.65, 1.0), 1.18, 1.18, 1.82 , 3 , 0.51 ),
- (14, "Silicon", "Si", ( 0.94, 0.78, 0.62, 1.0), 1.11, 1.11, 1.46 , -4 , 2.71 , -1 , 3.84 , 1 , 0.65 , 4 , 0.42 ),
- (15, "Phosphorus", "P", ( 1.0, 0.50, 0.0, 1.0), 1.06, 1.06, 1.23 , -3 , 2.12 , 3 , 0.44 , 5 , 0.35 ),
- (16, "Sulfur", "S", ( 1.0, 1.0, 0.18, 1.0), 1.02, 1.02, 1.09 , -2 , 1.84 , 2 , 2.19 , 4 , 0.37 , 6 , 0.30 ),
- (17, "Chlorine", "Cl", ( 0.12, 0.94, 0.12, 1.0), 0.99, 0.99, 0.97 , -1 , 1.81 , 5 , 0.34 , 7 , 0.27 ),
- (18, "Argon", "Ar", ( 0.50, 0.81, 0.89, 1.0), 0.98, 0.98, 0.88 , 1 , 1.54 ),
- (19, "Potassium", "K", ( 0.56, 0.25, 0.83, 1.0), 2.03, 2.03, 2.77 , 1 , 0.81 ),
- (20, "Calcium", "Ca", ( 0.23, 1.0, 0.0, 1.0), 1.74, 1.74, 2.23 , 1 , 1.18 , 2 , 0.99 ),
- (21, "Scandium", "Sc", ( 0.90, 0.90, 0.90, 1.0), 1.44, 1.44, 2.09 , 3 , 0.73 ),
- (22, "Titanium", "Ti", ( 0.74, 0.76, 0.78, 1.0), 1.32, 1.32, 2.00 , 1 , 0.96 , 2 , 0.94 , 3 , 0.76 , 4 , 0.68 ),
- (23, "Vanadium", "V", ( 0.65, 0.65, 0.67, 1.0), 1.22, 1.22, 1.92 , 2 , 0.88 , 3 , 0.74 , 4 , 0.63 , 5 , 0.59 ),
- (24, "Chromium", "Cr", ( 0.54, 0.6, 0.78, 1.0), 1.18, 1.18, 1.85 , 1 , 0.81 , 2 , 0.89 , 3 , 0.63 , 6 , 0.52 ),
- (25, "Manganese", "Mn", ( 0.61, 0.47, 0.78, 1.0), 1.17, 1.17, 1.79 , 2 , 0.80 , 3 , 0.66 , 4 , 0.60 , 7 , 0.46 ),
- (26, "Iron", "Fe", ( 0.87, 0.4, 0.2, 1.0), 1.17, 1.17, 1.72 , 2 , 0.74 , 3 , 0.64 ),
- (27, "Cobalt", "Co", ( 0.94, 0.56, 0.62, 1.0), 1.16, 1.16, 1.67 , 2 , 0.72 , 3 , 0.63 ),
- (28, "Nickel", "Ni", ( 0.31, 0.81, 0.31, 1.0), 1.15, 1.15, 1.62 , 2 , 0.69 ),
- (29, "Copper", "Cu", ( 0.78, 0.50, 0.2, 1.0), 1.17, 1.17, 1.57 , 1 , 0.96 , 2 , 0.72 ),
- (30, "Zinc", "Zn", ( 0.49, 0.50, 0.69, 1.0), 1.25, 1.25, 1.53 , 1 , 0.88 , 2 , 0.74 ),
- (31, "Gallium", "Ga", ( 0.76, 0.56, 0.56, 1.0), 1.26, 1.26, 1.81 , 1 , 0.81 , 3 , 0.62 ),
- (32, "Germanium", "Ge", ( 0.4, 0.56, 0.56, 1.0), 1.22, 1.22, 1.52 , -4 , 2.72 , 2 , 0.73 , 4 , 0.53 ),
- (33, "Arsenic", "As", ( 0.74, 0.50, 0.89, 1.0), 1.20, 1.20, 1.33 , -3 , 2.22 , 3 , 0.58 , 5 , 0.46 ),
- (34, "Selenium", "Se", ( 1.0, 0.63, 0.0, 1.0), 1.16, 1.16, 1.22 , -2 , 1.91 , -1 , 2.32 , 1 , 0.66 , 4 , 0.50 , 6 , 0.42 ),
- (35, "Bromine", "Br", ( 0.65, 0.16, 0.16, 1.0), 1.14, 1.14, 1.12 , -1 , 1.96 , 5 , 0.47 , 7 , 0.39 ),
- (36, "Krypton", "Kr", ( 0.36, 0.72, 0.81, 1.0), 1.31, 1.31, 1.24 ),
- (37, "Rubidium", "Rb", ( 0.43, 0.18, 0.69, 1.0), 2.16, 2.16, 2.98 , 1 , 1.47 ),
- (38, "Strontium", "Sr", ( 0.0, 1.0, 0.0, 1.0), 1.91, 1.91, 2.45 , 2 , 1.12 ),
- (39, "Yttrium", "Y", ( 0.58, 1.0, 1.0, 1.0), 1.62, 1.62, 2.27 , 3 , 0.89 ),
- (40, "Zirconium", "Zr", ( 0.58, 0.87, 0.87, 1.0), 1.45, 1.45, 2.16 , 1 , 1.09 , 4 , 0.79 ),
- (41, "Niobium", "Nb", ( 0.45, 0.76, 0.78, 1.0), 1.34, 1.34, 2.08 , 1 , 1.00 , 4 , 0.74 , 5 , 0.69 ),
- (42, "Molybdenum", "Mo", ( 0.32, 0.70, 0.70, 1.0), 1.30, 1.30, 2.01 , 1 , 0.93 , 4 , 0.70 , 6 , 0.62 ),
- (43, "Technetium", "Tc", ( 0.23, 0.61, 0.61, 1.0), 1.27, 1.27, 1.95 , 7 , 0.97 ),
- (44, "Ruthenium", "Ru", ( 0.14, 0.56, 0.56, 1.0), 1.25, 1.25, 1.89 , 4 , 0.67 ),
- (45, "Rhodium", "Rh", ( 0.03, 0.49, 0.54, 1.0), 1.25, 1.25, 1.83 , 3 , 0.68 ),
- (46, "Palladium", "Pd", ( 0.0, 0.41, 0.52, 1.0), 1.28, 1.28, 1.79 , 2 , 0.80 , 4 , 0.65 ),
- (47, "Silver", "Ag", ( 0.75, 0.75, 0.75, 1.0), 1.34, 1.34, 1.75 , 1 , 1.26 , 2 , 0.89 ),
- (48, "Cadmium", "Cd", ( 1.0, 0.85, 0.56, 1.0), 1.48, 1.48, 1.71 , 1 , 1.14 , 2 , 0.97 ),
- (49, "Indium", "In", ( 0.65, 0.45, 0.45, 1.0), 1.44, 1.44, 2.00 , 3 , 0.81 ),
- (50, "Tin", "Sn", ( 0.4, 0.50, 0.50, 1.0), 1.41, 1.41, 1.72 , -4 , 2.94 , -1 , 3.70 , 2 , 0.93 , 4 , 0.71 ),
- (51, "Antimony", "Sb", ( 0.61, 0.38, 0.70, 1.0), 1.40, 1.40, 1.53 , -3 , 2.45 , 3 , 0.76 , 5 , 0.62 ),
- (52, "Tellurium", "Te", ( 0.83, 0.47, 0.0, 1.0), 1.36, 1.36, 1.42 , -2 , 2.11 , -1 , 2.50 , 1 , 0.82 , 4 , 0.70 , 6 , 0.56 ),
- (53, "Iodine", "I", ( 0.58, 0.0, 0.58, 1.0), 1.33, 1.33, 1.32 , -1 , 2.20 , 5 , 0.62 , 7 , 0.50 ),
- (54, "Xenon", "Xe", ( 0.25, 0.61, 0.69, 1.0), 1.31, 1.31, 1.24 ),
- (55, "Caesium", "Cs", ( 0.34, 0.09, 0.56, 1.0), 2.35, 2.35, 3.35 , 1 , 1.67 ),
- (56, "Barium", "Ba", ( 0.0, 0.78, 0.0, 1.0), 1.98, 1.98, 2.78 , 1 , 1.53 , 2 , 1.34 ),
- (57, "Lanthanum", "La", ( 0.43, 0.83, 1.0, 1.0), 1.69, 1.69, 2.74 , 1 , 1.39 , 3 , 1.06 ),
- (58, "Cerium", "Ce", ( 1.0, 1.0, 0.78, 1.0), 1.65, 1.65, 2.70 , 1 , 1.27 , 3 , 1.03 , 4 , 0.92 ),
- (59, "Praseodymium", "Pr", ( 0.85, 1.0, 0.78, 1.0), 1.65, 1.65, 2.67 , 3 , 1.01 , 4 , 0.90 ),
- (60, "Neodymium", "Nd", ( 0.78, 1.0, 0.78, 1.0), 1.64, 1.64, 2.64 , 3 , 0.99 ),
- (61, "Promethium", "Pm", ( 0.63, 1.0, 0.78, 1.0), 1.63, 1.63, 2.62 , 3 , 0.97 ),
- (62, "Samarium", "Sm", ( 0.56, 1.0, 0.78, 1.0), 1.62, 1.62, 2.59 , 3 , 0.96 ),
- (63, "Europium", "Eu", ( 0.38, 1.0, 0.78, 1.0), 1.85, 1.85, 2.56 , 2 , 1.09 , 3 , 0.95 ),
- (64, "Gadolinium", "Gd", ( 0.27, 1.0, 0.78, 1.0), 1.61, 1.61, 2.54 , 3 , 0.93 ),
- (65, "Terbium", "Tb", ( 0.18, 1.0, 0.78, 1.0), 1.59, 1.59, 2.51 , 3 , 0.92 , 4 , 0.84 ),
- (66, "Dysprosium", "Dy", ( 0.12, 1.0, 0.78, 1.0), 1.59, 1.59, 2.49 , 3 , 0.90 ),
- (67, "Holmium", "Ho", ( 0.0, 1.0, 0.61, 1.0), 1.58, 1.58, 2.47 , 3 , 0.89 ),
- (68, "Erbium", "Er", ( 0.0, 0.90, 0.45, 1.0), 1.57, 1.57, 2.45 , 3 , 0.88 ),
- (69, "Thulium", "Tm", ( 0.0, 0.83, 0.32, 1.0), 1.56, 1.56, 2.42 , 3 , 0.87 ),
- (70, "Ytterbium", "Yb", ( 0.0, 0.74, 0.21, 1.0), 1.74, 1.74, 2.40 , 2 , 0.93 , 3 , 0.85 ),
- (71, "Lutetium", "Lu", ( 0.0, 0.67, 0.14, 1.0), 1.56, 1.56, 2.25 , 3 , 0.85 ),
- (72, "Hafnium", "Hf", ( 0.30, 0.76, 1.0, 1.0), 1.44, 1.44, 2.16 , 4 , 0.78 ),
- (73, "Tantalum", "Ta", ( 0.30, 0.65, 1.0, 1.0), 1.34, 1.34, 2.09 , 5 , 0.68 ),
- (74, "Tungsten", "W", ( 0.12, 0.58, 0.83, 1.0), 1.30, 1.30, 2.02 , 4 , 0.70 , 6 , 0.62 ),
- (75, "Rhenium", "Re", ( 0.14, 0.49, 0.67, 1.0), 1.28, 1.28, 1.97 , 4 , 0.72 , 7 , 0.56 ),
- (76, "Osmium", "Os", ( 0.14, 0.4, 0.58, 1.0), 1.26, 1.26, 1.92 , 4 , 0.88 , 6 , 0.69 ),
- (77, "Iridium", "Ir", ( 0.09, 0.32, 0.52, 1.0), 1.27, 1.27, 1.87 , 4 , 0.68 ),
- (78, "Platinum", "Pt", ( 0.81, 0.81, 0.87, 1.0), 1.30, 1.30, 1.83 , 2 , 0.80 , 4 , 0.65 ),
- (79, "Gold", "Au", ( 1.0, 0.81, 0.13, 1.0), 1.34, 1.34, 1.79 , 1 , 1.37 , 3 , 0.85 ),
- (80, "Mercury", "Hg", ( 0.72, 0.72, 0.81, 1.0), 1.49, 1.49, 1.76 , 1 , 1.27 , 2 , 1.10 ),
- (81, "Thallium", "Tl", ( 0.65, 0.32, 0.30, 1.0), 1.48, 1.48, 2.08 , 1 , 1.47 , 3 , 0.95 ),
- (82, "Lead", "Pb", ( 0.34, 0.34, 0.38, 1.0), 1.47, 1.47, 1.81 , 2 , 1.20 , 4 , 0.84 ),
- (83, "Bismuth", "Bi", ( 0.61, 0.30, 0.70, 1.0), 1.46, 1.46, 1.63 , 1 , 0.98 , 3 , 0.96 , 5 , 0.74 ),
- (84, "Polonium", "Po", ( 0.67, 0.36, 0.0, 1.0), 1.46, 1.46, 1.53 , 6 , 0.67 ),
- (85, "Astatine", "At", ( 0.45, 0.30, 0.27, 1.0), 1.45, 1.45, 1.43 , -3 , 2.22 , 3 , 0.85 , 5 , 0.46 ),
- (86, "Radon", "Rn", ( 0.25, 0.50, 0.58, 1.0), 1.00, 1.00, 1.34 ),
- (87, "Francium", "Fr", ( 0.25, 0.0, 0.4, 1.0), 1.00, 1.00, 1.00 , 1 , 1.80 ),
- (88, "Radium", "Ra", ( 0.0, 0.49, 0.0, 1.0), 1.00, 1.00, 1.00 , 2 , 1.43 ),
- (89, "Actinium", "Ac", ( 0.43, 0.67, 0.98, 1.0), 1.00, 1.00, 1.00 , 3 , 1.18 ),
- (90, "Thorium", "Th", ( 0.0, 0.72, 1.0, 1.0), 1.65, 1.65, 1.00 , 4 , 1.02 ),
- (91, "Protactinium", "Pa", ( 0.0, 0.63, 1.0, 1.0), 1.00, 1.00, 1.00 , 3 , 1.13 , 4 , 0.98 , 5 , 0.89 ),
- (92, "Uranium", "U", ( 0.0, 0.56, 1.0, 1.0), 1.42, 1.42, 1.00 , 4 , 0.97 , 6 , 0.80 ),
- (93, "Neptunium", "Np", ( 0.0, 0.50, 1.0, 1.0), 1.00, 1.00, 1.00 , 3 , 1.10 , 4 , 0.95 , 7 , 0.71 ),
- (94, "Plutonium", "Pu", ( 0.0, 0.41, 1.0, 1.0), 1.00, 1.00, 1.00 , 3 , 1.08 , 4 , 0.93 ),
- (95, "Americium", "Am", ( 0.32, 0.36, 0.94, 1.0), 1.00, 1.00, 1.00 , 3 , 1.07 , 4 , 0.92 ),
- (96, "Curium", "Cm", ( 0.47, 0.36, 0.89, 1.0), 1.00, 1.00, 1.00 ),
- (97, "Berkelium", "Bk", ( 0.54, 0.30, 0.89, 1.0), 1.00, 1.00, 1.00 ),
- (98, "Californium", "Cf", ( 0.63, 0.21, 0.83, 1.0), 1.00, 1.00, 1.00 ),
- (99, "Einsteinium", "Es", ( 0.70, 0.12, 0.83, 1.0), 1.00, 1.00, 1.00 ),
- (100, "Fermium", "Fm", ( 0.70, 0.12, 0.72, 1.0), 1.00, 1.00, 1.00 ),
- (101, "Mendelevium", "Md", ( 0.70, 0.05, 0.65, 1.0), 1.00, 1.00, 1.00 ),
- (102, "Nobelium", "No", ( 0.74, 0.05, 0.52, 1.0), 1.00, 1.00, 1.00 ),
- (103, "Lawrencium", "Lr", ( 0.78, 0.0, 0.4, 1.0), 1.00, 1.00, 1.00 ),
- (104, "Vacancy", "Vac", ( 0.5, 0.5, 0.5, 1.0), 1.00, 1.00, 1.00),
- (105, "Default", "Default", ( 1.0, 1.0, 1.0, 1.0), 1.00, 1.00, 1.00),
- (106, "Stick", "Stick", ( 0.5, 0.5, 0.5, 1.0), 1.00, 1.00, 1.00),
- )
-
- # This list here contains all data of the elements and will be used during
- # runtime. It is a list of classes.
- # During executing Atomic Blender, the list will be initialized with the fixed
- # data from above via the class structure below (CLASS_atom_pdb_Elements). We
- # have then one fixed list (above), which will never be changed, and a list of
- # classes with same data. The latter can be modified via loading a separate
- # custom data file.
- ATOM_CLUSTER_ELEMENTS = []
- ATOM_CLUSTER_ALL_ATOMS = []
-
- # This is the class, which stores the properties for one element.
- class CLASS_atom_cluster_Elements(object):
- __slots__ = ('number', 'name', 'short_name', 'color', 'radii', 'radii_ionic')
- def __init__(self, number, name, short_name, color, radii, radii_ionic):
- self.number = number
- self.name = name
- self.short_name = short_name
- self.color = color
- self.radii = radii
- self.radii_ionic = radii_ionic
-
- # This is the class, which stores the properties of one atom.
- class CLASS_atom_cluster_atom(object):
- __slots__ = ('location')
- def __init__(self, location):
- self.location = location
-
- # -----------------------------------------------------------------------------
- # Read atom data
-
- def DEF_atom_read_atom_data():
-
- del ATOM_CLUSTER_ELEMENTS[:]
-
- for item in ATOM_CLUSTER_ELEMENTS_DEFAULT:
-
- # All three radii into a list
- radii = [item[4],item[5],item[6]]
- # The handling of the ionic radii will be done later. So far, it is an
- # empty list.
- radii_ionic = []
-
- li = CLASS_atom_cluster_Elements(item[0],item[1],item[2],item[3],
- radii,radii_ionic)
- ATOM_CLUSTER_ELEMENTS.append(li)
-
-
- # -----------------------------------------------------------------------------
- # Routines for shapes
-
- def vec_in_sphere(atom_pos,size, skin):
-
- regular = True
- inner = True
-
- if atom_pos.length > size/2.0:
- regular = False
-
- if atom_pos.length < (size/2.0)*(1-skin):
- inner = False
-
- return (regular, inner)
-
-
- def vec_in_parabole(atom_pos, height, diameter):
-
- regular = True
- inner = True
-
- px = atom_pos[0]
- py = atom_pos[1]
- pz = atom_pos[2] + height/2.0
-
- a = diameter / sqrt(4 * height)
-
-
- if pz < 0.0:
- return (False, False)
- if px == 0.0 and py == 0.0:
- return (True, True)
-
- if py == 0.0:
- y = 0.0
- x = a * a * pz / px
- z = x * x / (a * a)
- else:
- y = pz * py * a * a / (px*px + py*py)
- x = y * px / py
- z = (x*x + y*y) / (a * a)
-
- if( atom_pos.length > sqrt(x*x+y*y+z*z) ):
- regular = False
-
- return (regular, inner)
-
-
- def vec_in_pyramide_square(atom_pos, size, skin):
-
- """
- Please, if possible leave all this! The code documents the
- mathemetical way of cutting a pyramide with square base.
-
- P1 = Vector((-size/2, 0.0, -size/4))
- P2 = Vector((0.0, -size/2, -size/4))
- P4 = Vector((size/2, 0.0, -size/4))
- P5 = Vector((0.0, size/2, -size/4))
- P6 = Vector((0.0, 0.0, size/4))
-
- # First face
- v11 = P1 - P2
- v12 = P1 - P6
- n1 = v11.cross(v12)
- g1 = -n1 * P1
-
- # Second face
- v21 = P6 - P4
- v22 = P6 - P5
- n2 = v21.cross(v22)
- g2 = -n2 * P6
-
- # Third face
- v31 = P1 - P5
- v32 = P1 - P6
- n3 = v32.cross(v31)
- g3 = -n3 * P1
-
- # Forth face
- v41 = P6 - P2
- v42 = P2 - P4
- n4 = v41.cross(v42)
- g4 = -n4 * P2
-
- # Fith face, base
- v51 = P2 - P1
- v52 = P2 - P4
- n5 = v51.cross(v52)
- g5 = -n5 * P2
- """
-
- # A much faster way for calculation:
- size2 = size * size
- size3 = size2 * size
- n1 = Vector((-1/4, -1/4, 1/4)) * size2
- g1 = -1/16 * size3
- n2 = Vector(( 1/4, 1/4, 1/4)) * size2
- g2 = g1
- n3 = Vector((-1/4, 1/4, 1/4)) * size2
- g3 = g1
- n4 = Vector(( 1/4, -1/4, 1/4)) * size2
- g4 = g1
- n5 = Vector(( 0.0, 0.0, -1/2)) * size2
- g5 = -1/8 * size3
-
- distance_plane_1 = abs((n1 @ atom_pos - g1)/n1.length)
- on_plane_1 = (atom_pos - n1 * (distance_plane_1/n1.length)).length
- distance_plane_2 = abs((n2 @ atom_pos - g2)/n2.length)
- on_plane_2 = (atom_pos - n2 * (distance_plane_2/n2.length)).length
- distance_plane_3 = abs((n3 @ atom_pos - g3)/n3.length)
- on_plane_3 = (atom_pos - n3 * (distance_plane_3/n3.length)).length
- distance_plane_4 = abs((n4 @ atom_pos - g4)/n4.length)
- on_plane_4 = (atom_pos - n4 * (distance_plane_4/n4.length)).length
- distance_plane_5 = abs((n5 @ atom_pos - g5)/n5.length)
- on_plane_5 = (atom_pos - n5 * (distance_plane_5/n5.length)).length
-
- regular = True
- inner = True
- if(atom_pos.length > on_plane_1):
- regular = False
- if(atom_pos.length > on_plane_2):
- regular = False
- if(atom_pos.length > on_plane_3):
- regular = False
- if(atom_pos.length > on_plane_4):
- regular = False
- if(atom_pos.length > on_plane_5):
- regular = False
-
- if skin == 1.0:
- return (regular, inner)
-
- size = size * (1.0 - skin)
-
- size2 = size * size
- size3 = size2 * size
- n1 = Vector((-1/4, -1/4, 1/4)) * size2
- g1 = -1/16 * size3
- n2 = Vector(( 1/4, 1/4, 1/4)) * size2
- g2 = g1
- n3 = Vector((-1/4, 1/4, 1/4)) * size2
- g3 = g1
- n4 = Vector(( 1/4, -1/4, 1/4)) * size2
- g4 = g1
- n5 = Vector(( 0.0, 0.0, -1/2)) * size2
- g5 = -1/8 * size3
-
- distance_plane_1 = abs((n1 @ atom_pos - g1)/n1.length)
- on_plane_1 = (atom_pos - n1 * (distance_plane_1/n1.length)).length
- distance_plane_2 = abs((n2 @ atom_pos - g2)/n2.length)
- on_plane_2 = (atom_pos - n2 * (distance_plane_2/n2.length)).length
- distance_plane_3 = abs((n3 @ atom_pos - g3)/n3.length)
- on_plane_3 = (atom_pos - n3 * (distance_plane_3/n3.length)).length
- distance_plane_4 = abs((n4 @ atom_pos - g4)/n4.length)
- on_plane_4 = (atom_pos - n4 * (distance_plane_4/n4.length)).length
- distance_plane_5 = abs((n5 @ atom_pos - g5)/n5.length)
- on_plane_5 = (atom_pos - n5 * (distance_plane_5/n5.length)).length
-
- inner = False
- if(atom_pos.length > on_plane_1):
- inner = True
- if(atom_pos.length > on_plane_2):
- inner = True
- if(atom_pos.length > on_plane_3):
- inner = True
- if(atom_pos.length > on_plane_4):
- inner = True
- if(atom_pos.length > on_plane_5):
- inner = True
-
- return (regular, inner)
-
-
- def vec_in_pyramide_hex_abc(atom_pos, size, skin):
-
- a = size/2.0
- #c = size/2.0*cos((30/360)*2.0*pi)
- c = size * 0.4330127020
- #s = size/2.0*sin((30/360)*2.0*pi)
- s = size * 0.25
- #h = 2.0 * (sqrt(6.0)/3.0) * c
- h = 1.632993162 * c
-
- """
- Please, if possible leave all this! The code documents the
- mathemetical way of cutting a tetraeder.
-
- P1 = Vector((0.0, a, 0.0))
- P2 = Vector(( -c, -s, 0.0))
- P3 = Vector(( c, -s, 0.0))
- P4 = Vector((0.0, 0.0, h))
- C = (P1+P2+P3+P4)/4.0
- P1 = P1 - C
- P2 = P2 - C
- P3 = P3 - C
- P4 = P4 - C
-
- # First face
- v11 = P1 - P2
- v12 = P1 - P4
- n1 = v11.cross(v12)
- g1 = -n1 * P1
-
- # Second face
- v21 = P2 - P3
- v22 = P2 - P4
- n2 = v21.cross(v22)
- g2 = -n2 * P2
-
- # Third face
- v31 = P3 - P1
- v32 = P3 - P4
- n3 = v31.cross(v32)
- g3 = -n3 * P3
-
- # Forth face
- v41 = P2 - P1
- v42 = P2 - P3
- n4 = v41.cross(v42)
- g4 = -n4 * P1
- """
-
- n1 = Vector(( -h*(a+s), c*h, c*a ))
- g1 = -1/2*c*(a*h+s*h)
- n2 = Vector(( 0, -2*c*h, 2*c*s ))
- g2 = -1/2*c*(a*h+s*h)
- n3 = Vector(( h*(a+s), c*h, a*c ))
- g3 = -1/2*c*(a*h+s*h)
- n4 = Vector(( 0, 0, -2*c*(s+a) ))
- g4 = -1/2*h*c*(s+a)
-
- distance_plane_1 = abs((n1 @ atom_pos - g1)/n1.length)
- on_plane_1 = (atom_pos - n1 * (distance_plane_1/n1.length)).length
- distance_plane_2 = abs((n2 @ atom_pos - g2)/n2.length)
- on_plane_2 = (atom_pos - n2 * (distance_plane_2/n2.length)).length
- distance_plane_3 = abs((n3 @ atom_pos - g3)/n3.length)
- on_plane_3 = (atom_pos - n3 * (distance_plane_3/n3.length)).length
- distance_plane_4 = abs((n4 @ atom_pos - g4)/n4.length)
- on_plane_4 = (atom_pos - n4 * (distance_plane_4/n4.length)).length
-
- regular = True
- inner = True
- if(atom_pos.length > on_plane_1):
- regular = False
- if(atom_pos.length > on_plane_2):
- regular = False
- if(atom_pos.length > on_plane_3):
- regular = False
- if(atom_pos.length > on_plane_4):
- regular = False
-
- if skin == 1.0:
- return (regular, inner)
-
- size = size * (1.0 - skin)
-
- a = size/2.0
- #c = size/2.0*cos((30/360)*2.0*pi)
- c= size * 0.4330127020
- #s = size/2.0*sin((30/360)*2.0*pi)
- s = size * 0.25
- #h = 2.0 * (sqrt(6.0)/3.0) * c
- h = 1.632993162 * c
-
- n1 = Vector(( -h*(a+s), c*h, c*a ))
- g1 = -1/2*c*(a*h+s*h)
- n2 = Vector(( 0, -2*c*h, 2*c*s ))
- g2 = -1/2*c*(a*h+s*h)
- n3 = Vector(( h*(a+s), c*h, a*c ))
- g3 = -1/2*c*(a*h+s*h)
- n4 = Vector(( 0, 0, -2*c*(s+a) ))
- g4 = -1/2*h*c*(s+a)
-
- distance_plane_1 = abs((n1 @ atom_pos - g1)/n1.length)
- on_plane_1 = (atom_pos - n1 * (distance_plane_1/n1.length)).length
- distance_plane_2 = abs((n2 @ atom_pos - g2)/n2.length)
- on_plane_2 = (atom_pos - n2 * (distance_plane_2/n2.length)).length
- distance_plane_3 = abs((n3 @ atom_pos - g3)/n3.length)
- on_plane_3 = (atom_pos - n3 * (distance_plane_3/n3.length)).length
- distance_plane_4 = abs((n4 @ atom_pos - g4)/n4.length)
- on_plane_4 = (atom_pos - n4 * (distance_plane_4/n4.length)).length
-
- inner = False
- if(atom_pos.length > on_plane_1):
- inner = True
- if(atom_pos.length > on_plane_2):
- inner = True
- if(atom_pos.length > on_plane_3):
- inner = True
- if(atom_pos.length > on_plane_4):
- inner = True
-
- return (regular, inner)
-
-
-
- def vec_in_octahedron(atom_pos,size, skin):
-
- regular = True
- inner = True
-
- """
- Please, if possible leave all this! The code documents the
- mathemetical way of cutting an octahedron.
-
- P1 = Vector((-size/2, 0.0, 0.0))
- P2 = Vector((0.0, -size/2, 0.0))
- P3 = Vector((0.0, 0.0, -size/2))
- P4 = Vector((size/2, 0.0, 0.0))
- P5 = Vector((0.0, size/2, 0.0))
- P6 = Vector((0.0, 0.0, size/2))
-
- # First face
- v11 = P2 - P1
- v12 = P2 - P3
- n1 = v11.cross(v12)
- g1 = -n1 * P2
-
- # Second face
- v21 = P1 - P5
- v22 = P1 - P3
- n2 = v21.cross(v22)
- g2 = -n2 * P1
-
- # Third face
- v31 = P1 - P2
- v32 = P1 - P6
- n3 = v31.cross(v32)
- g3 = -n3 * P1
-
- # Forth face
- v41 = P6 - P2
- v42 = P2 - P4
- n4 = v41.cross(v42)
- g4 = -n4 * P2
-
- # Fith face
- v51 = P2 - P3
- v52 = P2 - P4
- n5 = v51.cross(v52)
- g5 = -n5 * P2
-
- # Six face
- v61 = P6 - P4
- v62 = P6 - P5
- n6 = v61.cross(v62)
- g6 = -n6 * P6
-
- # Seventh face
- v71 = P5 - P4
- v72 = P5 - P3
- n7 = v71.cross(v72)
- g7 = -n7 * P5
-
- # Eigth face
- v81 = P1 - P5
- v82 = P1 - P6
- n8 = v82.cross(v81)
- g8 = -n8 * P1
- """
-
- # A much faster way for calculation:
- size2 = size * size
- size3 = size2 * size
- n1 = Vector((-1/4, -1/4, -1/4)) * size2
- g1 = -1/8 * size3
- n2 = Vector((-1/4, 1/4, -1/4)) * size2
- g2 = g1
- n3 = Vector((-1/4, -1/4, 1/4)) * size2
- g3 = g1
- n4 = Vector(( 1/4, -1/4, 1/4)) * size2
- g4 = g1
- n5 = Vector(( 1/4, -1/4, -1/4)) * size2
- g5 = g1
- n6 = Vector(( 1/4, 1/4, 1/4)) * size2
- g6 = g1
- n7 = Vector(( 1/4, 1/4, -1/4)) * size2
- g7 = g1
- n8 = Vector((-1/4, 1/4, 1/4)) * size2
- g8 = g1
-
- distance_plane_1 = abs((n1 @ atom_pos - g1)/n1.length)
- on_plane_1 = (atom_pos - n1 * (distance_plane_1/n1.length)).length
- distance_plane_2 = abs((n2 @ atom_pos - g2)/n2.length)
- on_plane_2 = (atom_pos - n2 * (distance_plane_2/n2.length)).length
- distance_plane_3 = abs((n3 @ atom_pos - g3)/n3.length)
- on_plane_3 = (atom_pos - n3 * (distance_plane_3/n3.length)).length
- distance_plane_4 = abs((n4 @ atom_pos - g4)/n4.length)
- on_plane_4 = (atom_pos - n4 * (distance_plane_4/n4.length)).length
- distance_plane_5 = abs((n5 @ atom_pos - g5)/n5.length)
- on_plane_5 = (atom_pos - n5 * (distance_plane_5/n5.length)).length
- distance_plane_6 = abs((n6 @ atom_pos - g6)/n6.length)
- on_plane_6 = (atom_pos - n6 * (distance_plane_6/n6.length)).length
- distance_plane_7 = abs((n7 @ atom_pos - g7)/n7.length)
- on_plane_7 = (atom_pos - n7 * (distance_plane_7/n7.length)).length
- distance_plane_8 = abs((n8 @ atom_pos - g8)/n8.length)
- on_plane_8 = (atom_pos - n8 * (distance_plane_8/n8.length)).length
-
- if(atom_pos.length > on_plane_1):
- regular = False
- if(atom_pos.length > on_plane_2):
- regular = False
- if(atom_pos.length > on_plane_3):
- regular = False
- if(atom_pos.length > on_plane_4):
- regular = False
- if(atom_pos.length > on_plane_5):
- regular = False
- if(atom_pos.length > on_plane_6):
- regular = False
- if(atom_pos.length > on_plane_7):
- regular = False
- if(atom_pos.length > on_plane_8):
- regular = False
-
- if skin == 1.0:
- return (regular, inner)
-
- size = size * (1.0 - skin)
-
- size2 = size * size
- size3 = size2 * size
- n1 = Vector((-1/4, -1/4, -1/4)) * size2
- g1 = -1/8 * size3
- n2 = Vector((-1/4, 1/4, -1/4)) * size2
- g2 = g1
- n3 = Vector((-1/4, -1/4, 1/4)) * size2
- g3 = g1
- n4 = Vector(( 1/4, -1/4, 1/4)) * size2
- g4 = g1
- n5 = Vector(( 1/4, -1/4, -1/4)) * size2
- g5 = g1
- n6 = Vector(( 1/4, 1/4, 1/4)) * size2
- g6 = g1
- n7 = Vector(( 1/4, 1/4, -1/4)) * size2
- g7 = g1
- n8 = Vector((-1/4, 1/4, 1/4)) * size2
- g8 = g1
-
- distance_plane_1 = abs((n1 @ atom_pos - g1)/n1.length)
- on_plane_1 = (atom_pos - n1 * (distance_plane_1/n1.length)).length
- distance_plane_2 = abs((n2 @ atom_pos - g2)/n2.length)
- on_plane_2 = (atom_pos - n2 * (distance_plane_2/n2.length)).length
- distance_plane_3 = abs((n3 @ atom_pos - g3)/n3.length)
- on_plane_3 = (atom_pos - n3 * (distance_plane_3/n3.length)).length
- distance_plane_4 = abs((n4 @ atom_pos - g4)/n4.length)
- on_plane_4 = (atom_pos - n4 * (distance_plane_4/n4.length)).length
- distance_plane_5 = abs((n5 @ atom_pos - g5)/n5.length)
- on_plane_5 = (atom_pos - n5 * (distance_plane_5/n5.length)).length
- distance_plane_6 = abs((n6 @ atom_pos - g6)/n6.length)
- on_plane_6 = (atom_pos - n6 * (distance_plane_6/n6.length)).length
- distance_plane_7 = abs((n7 @ atom_pos - g7)/n7.length)
- on_plane_7 = (atom_pos - n7 * (distance_plane_7/n7.length)).length
- distance_plane_8 = abs((n8 @ atom_pos - g8)/n8.length)
- on_plane_8 = (atom_pos - n8 * (distance_plane_8/n8.length)).length
-
- inner = False
- if(atom_pos.length > on_plane_1):
- inner = True
- if(atom_pos.length > on_plane_2):
- inner = True
- if(atom_pos.length > on_plane_3):
- inner = True
- if(atom_pos.length > on_plane_4):
- inner = True
- if(atom_pos.length > on_plane_5):
- inner = True
- if(atom_pos.length > on_plane_6):
- inner = True
- if(atom_pos.length > on_plane_7):
- inner = True
- if(atom_pos.length > on_plane_8):
- inner = True
-
- return (regular, inner)
-
-
- def vec_in_truncated_octahedron(atom_pos,size, skin):
-
- regular = True
- inner = True
-
- # The normal octahedron
- size2 = size * size
- size3 = size2 * size
- n1 = Vector((-1/4, -1/4, -1/4)) * size2
- g1 = -1/8 * size3
- n2 = Vector((-1/4, 1/4, -1/4)) * size2
- g2 = g1
- n3 = Vector((-1/4, -1/4, 1/4)) * size2
- g3 = g1
- n4 = Vector(( 1/4, -1/4, 1/4)) * size2
- g4 = g1
- n5 = Vector(( 1/4, -1/4, -1/4)) * size2
- g5 = g1
- n6 = Vector(( 1/4, 1/4, 1/4)) * size2
- g6 = g1
- n7 = Vector(( 1/4, 1/4, -1/4)) * size2
- g7 = g1
- n8 = Vector((-1/4, 1/4, 1/4)) * size2
- g8 = g1
-
- distance_plane_1 = abs((n1 @ atom_pos - g1)/n1.length)
- on_plane_1 = (atom_pos - n1 * (distance_plane_1/n1.length)).length
- distance_plane_2 = abs((n2 @ atom_pos - g2)/n2.length)
- on_plane_2 = (atom_pos - n2 * (distance_plane_2/n2.length)).length
- distance_plane_3 = abs((n3 @ atom_pos - g3)/n3.length)
- on_plane_3 = (atom_pos - n3 * (distance_plane_3/n3.length)).length
- distance_plane_4 = abs((n4 @ atom_pos - g4)/n4.length)
- on_plane_4 = (atom_pos - n4 * (distance_plane_4/n4.length)).length
- distance_plane_5 = abs((n5 @ atom_pos - g5)/n5.length)
- on_plane_5 = (atom_pos - n5 * (distance_plane_5/n5.length)).length
- distance_plane_6 = abs((n6 @ atom_pos - g6)/n6.length)
- on_plane_6 = (atom_pos - n6 * (distance_plane_6/n6.length)).length
- distance_plane_7 = abs((n7 @ atom_pos - g7)/n7.length)
- on_plane_7 = (atom_pos - n7 * (distance_plane_7/n7.length)).length
- distance_plane_8 = abs((n8 @ atom_pos - g8)/n8.length)
- on_plane_8 = (atom_pos - n8 * (distance_plane_8/n8.length)).length
-
- # Here are the 6 additional faces
- # pp = (size/2.0) - (sqrt(2.0)/2.0) * ((size/sqrt(2.0))/3.0)
- pp = size / 3.0
-
- n_1 = Vector((1.0,0.0,0.0))
- n_2 = Vector((-1.0,0.0,0.0))
- n_3 = Vector((0.0,1.0,0.0))
- n_4 = Vector((0.0,-1.0,0.0))
- n_5 = Vector((0.0,0.0,1.0))
- n_6 = Vector((0.0,0.0,-1.0))
-
- distance_plane_1b = abs((n_1 @ atom_pos + pp)/n_1.length)
- on_plane_1b = (atom_pos - n_1 * (distance_plane_1b/n_1.length)).length
- distance_plane_2b = abs((n_2 @ atom_pos + pp)/n_2.length)
- on_plane_2b = (atom_pos - n_2 * (distance_plane_2b/n_2.length)).length
- distance_plane_3b = abs((n_3 @ atom_pos + pp)/n_3.length)
- on_plane_3b = (atom_pos - n_3 * (distance_plane_3b/n_3.length)).length
- distance_plane_4b = abs((n_4 @ atom_pos + pp)/n_4.length)
- on_plane_4b = (atom_pos - n_4 * (distance_plane_4b/n_4.length)).length
- distance_plane_5b = abs((n_5 @ atom_pos + pp)/n_5.length)
- on_plane_5b = (atom_pos - n_5 * (distance_plane_5b/n_5.length)).length
- distance_plane_6b = abs((n_6 @ atom_pos + pp)/n_6.length)
- on_plane_6b = (atom_pos - n_6 * (distance_plane_6b/n_6.length)).length
-
- if(atom_pos.length > on_plane_1):
- regular = False
- if(atom_pos.length > on_plane_2):
- regular = False
- if(atom_pos.length > on_plane_3):
- regular = False
- if(atom_pos.length > on_plane_4):
- regular = False
- if(atom_pos.length > on_plane_5):
- regular = False
- if(atom_pos.length > on_plane_6):
- regular = False
- if(atom_pos.length > on_plane_7):
- regular = False
- if(atom_pos.length > on_plane_8):
- regular = False
- if(atom_pos.length > on_plane_1b):
- regular = False
- if(atom_pos.length > on_plane_2b):
- regular = False
- if(atom_pos.length > on_plane_3b):
- regular = False
- if(atom_pos.length > on_plane_4b):
- regular = False
- if(atom_pos.length > on_plane_5b):
- regular = False
- if(atom_pos.length > on_plane_6b):
- regular = False
-
- if skin == 1.0:
- return (regular, inner)
-
- size = size * (1.0 - skin)
-
- # The normal octahedron
- size2 = size * size
- size3 = size2 * size
- n1 = Vector((-1/4, -1/4, -1/4)) * size2
- g1 = -1/8 * size3
- n2 = Vector((-1/4, 1/4, -1/4)) * size2
- g2 = g1
- n3 = Vector((-1/4, -1/4, 1/4)) * size2
- g3 = g1
- n4 = Vector(( 1/4, -1/4, 1/4)) * size2
- g4 = g1
- n5 = Vector(( 1/4, -1/4, -1/4)) * size2
- g5 = g1
- n6 = Vector(( 1/4, 1/4, 1/4)) * size2
- g6 = g1
- n7 = Vector(( 1/4, 1/4, -1/4)) * size2
- g7 = g1
- n8 = Vector((-1/4, 1/4, 1/4)) * size2
- g8 = g1
-
- distance_plane_1 = abs((n1 @ atom_pos - g1)/n1.length)
- on_plane_1 = (atom_pos - n1 * (distance_plane_1/n1.length)).length
- distance_plane_2 = abs((n2 @ atom_pos - g2)/n2.length)
- on_plane_2 = (atom_pos - n2 * (distance_plane_2/n2.length)).length
- distance_plane_3 = abs((n3 @ atom_pos - g3)/n3.length)
- on_plane_3 = (atom_pos - n3 * (distance_plane_3/n3.length)).length
- distance_plane_4 = abs((n4 @ atom_pos - g4)/n4.length)
- on_plane_4 = (atom_pos - n4 * (distance_plane_4/n4.length)).length
- distance_plane_5 = abs((n5 @ atom_pos - g5)/n5.length)
- on_plane_5 = (atom_pos - n5 * (distance_plane_5/n5.length)).length
- distance_plane_6 = abs((n6 @ atom_pos - g6)/n6.length)
- on_plane_6 = (atom_pos - n6 * (distance_plane_6/n6.length)).length
- distance_plane_7 = abs((n7 @ atom_pos - g7)/n7.length)
- on_plane_7 = (atom_pos - n7 * (distance_plane_7/n7.length)).length
- distance_plane_8 = abs((n8 @ atom_pos - g8)/n8.length)
- on_plane_8 = (atom_pos - n8 * (distance_plane_8/n8.length)).length
-
- # Here are the 6 additional faces
- # pp = (size/2.0) - (sqrt(2.0)/2.0) * ((size/sqrt(2.0))/3.0)
- pp = size / 3.0
-
- n_1 = Vector((1.0,0.0,0.0))
- n_2 = Vector((-1.0,0.0,0.0))
- n_3 = Vector((0.0,1.0,0.0))
- n_4 = Vector((0.0,-1.0,0.0))
- n_5 = Vector((0.0,0.0,1.0))
- n_6 = Vector((0.0,0.0,-1.0))
-
- distance_plane_1b = abs((n_1 @ atom_pos + pp)/n_1.length)
- on_plane_1b = (atom_pos - n_1 * (distance_plane_1b/n_1.length)).length
- distance_plane_2b = abs((n_2 @ atom_pos + pp)/n_2.length)
- on_plane_2b = (atom_pos - n_2 * (distance_plane_2b/n_2.length)).length
- distance_plane_3b = abs((n_3 @ atom_pos + pp)/n_3.length)
- on_plane_3b = (atom_pos - n_3 * (distance_plane_3b/n_3.length)).length
- distance_plane_4b = abs((n_4 @ atom_pos + pp)/n_4.length)
- on_plane_4b = (atom_pos - n_4 * (distance_plane_4b/n_4.length)).length
- distance_plane_5b = abs((n_5 @ atom_pos + pp)/n_5.length)
- on_plane_5b = (atom_pos - n_5 * (distance_plane_5b/n_5.length)).length
- distance_plane_6b = abs((n_6 @ atom_pos + pp)/n_6.length)
- on_plane_6b = (atom_pos - n_6 * (distance_plane_6b/n_6.length)).length
-
- inner = False
-
- if(atom_pos.length > on_plane_1):
- inner = True
- if(atom_pos.length > on_plane_2):
- inner = True
- if(atom_pos.length > on_plane_3):
- inner = True
- if(atom_pos.length > on_plane_4):
- inner = True
- if(atom_pos.length > on_plane_5):
- inner = True
- if(atom_pos.length > on_plane_6):
- inner = True
- if(atom_pos.length > on_plane_7):
- inner = True
- if(atom_pos.length > on_plane_8):
- inner = True
- if(atom_pos.length > on_plane_1b):
- inner = True
- if(atom_pos.length > on_plane_2b):
- inner = True
- if(atom_pos.length > on_plane_3b):
- inner = True
- if(atom_pos.length > on_plane_4b):
- inner = True
- if(atom_pos.length > on_plane_5b):
- inner = True
- if(atom_pos.length > on_plane_6b):
- inner = True
-
- return (regular, inner)
-
- # -----------------------------------------------------------------------------
- # Routines for lattices
-
- def create_hexagonal_abcabc_lattice(ctype, size, skin, lattice):
-
- atom_number_total = 0
- atom_number_drawn = 0
- y_displ = 0
- z_displ = 0
-
- """
- e = (1/sqrt(2.0)) * lattice
- f = sqrt(3.0/4.0) * e
- df1 = (e/2.0) * tan((30.0/360.0)*2.0*pi)
- df2 = (e/2.0) / cos((30.0/360.0)*2.0*pi)
- g = sqrt(2.0/3.0) * e
- """
-
- e = 0.7071067810 * lattice
- f = 0.8660254038 * e
- df1 = 0.2886751348 * e
- df2 = 0.5773502690 * e
- g = 0.8164965810 * e
-
- if ctype == "parabolid_abc":
- # size = height, skin = diameter
- number_x = int(skin/(2*e))+4
- number_y = int(skin/(2*f))+4
- number_z = int(size/(2*g))
- else:
- number_x = int(size/(2*e))+4
- number_y = int(size/(2*f))+4
- number_z = int(size/(2*g))+1+4
-
-
- for k in range(-number_z,number_z+1):
- for j in range(-number_y,number_y+1):
- for i in range(-number_x,number_x+1):
- atom = Vector((float(i)*e,float(j)*f,float(k)*g))
-
- if y_displ == 1:
- if z_displ == 1:
- atom[0] += e/2.0
- else:
- atom[0] -= e/2.0
- if z_displ == 1:
- atom[0] -= e/2.0
- atom[1] += df1
- if z_displ == 2:
- atom[0] += 0.0
- atom[1] += df2
-
- if ctype == "sphere_hex_abc":
- message = vec_in_sphere(atom, size, skin)
- elif ctype == "pyramide_hex_abc":
- # size = height, skin = diameter
- message = vec_in_pyramide_hex_abc(atom, size, skin)
- elif ctype == "parabolid_abc":
- message = vec_in_parabole(atom, size, skin)
-
- if message[0] == True and message[1] == True:
- atom_add = CLASS_atom_cluster_atom(atom)
- ATOM_CLUSTER_ALL_ATOMS.append(atom_add)
- atom_number_total += 1
- atom_number_drawn += 1
- if message[0] == True and message[1] == False:
- atom_number_total += 1
-
- if y_displ == 1:
- y_displ = 0
- else:
- y_displ = 1
-
- y_displ = 0
- if z_displ == 0:
- z_displ = 1
- elif z_displ == 1:
- z_displ = 2
- else:
- z_displ = 0
-
- print("Atom positions calculated")
-
- return (atom_number_total, atom_number_drawn)
-
-
- def create_hexagonal_abab_lattice(ctype, size, skin, lattice):
-
- atom_number_total = 0
- atom_number_drawn = 0
- y_displ = "even"
- z_displ = "even"
-
- """
- e = (1/sqrt(2.0)) * lattice
- f = sqrt(3.0/4.0) * e
- df = (e/2.0) * tan((30.0/360.0)*2*pi)
- g = sqrt(2.0/3.0) * e
- """
-
- e = 0.7071067814 * lattice
- f = 0.8660254038 * e
- df = 0.2886751348 * e
- g = 0.8164965810 * e
-
-
- if ctype == "parabolid_ab":
- # size = height, skin = diameter
- number_x = int(skin/(2*e))+4
- number_y = int(skin/(2*f))+4
- number_z = int(size/(2*g))
- else:
- number_x = int(size/(2*e))+4
- number_y = int(size/(2*f))+4
- number_z = int(size/(2*g))+1+4
-
-
- for k in range(-number_z,number_z+1):
- for j in range(-number_y,number_y+1):
- for i in range(-number_x,number_x+1):
-
- atom = Vector((float(i)*e,float(j)*f,float(k)*g))
-
- if "odd" in y_displ:
- if "odd" in z_displ:
- atom[0] += e/2.0
- else:
- atom[0] -= e/2.0
- if "odd" in z_displ:
- atom[0] -= e/2.0
- atom[1] += df
-
- if ctype == "sphere_hex_ab":
- message = vec_in_sphere(atom, size, skin)
- elif ctype == "parabolid_ab":
- # size = height, skin = diameter
- message = vec_in_parabole(atom, size, skin)
-
- if message[0] == True and message[1] == True:
- atom_add = CLASS_atom_cluster_atom(atom)
- ATOM_CLUSTER_ALL_ATOMS.append(atom_add)
- atom_number_total += 1
- atom_number_drawn += 1
- if message[0] == True and message[1] == False:
- atom_number_total += 1
-
- if "even" in y_displ:
- y_displ = "odd"
- else:
- y_displ = "even"
-
- y_displ = "even"
- if "even" in z_displ:
- z_displ = "odd"
- else:
- z_displ = "even"
-
- print("Atom positions calculated")
-
- return (atom_number_total, atom_number_drawn)
-
-
- def create_square_lattice(ctype, size, skin, lattice):
-
- atom_number_total = 0
- atom_number_drawn = 0
-
- if ctype == "parabolid_square":
- # size = height, skin = diameter
- number_k = int(size/(2.0*lattice))
- number_j = int(skin/(2.0*lattice)) + 5
- number_i = int(skin/(2.0*lattice)) + 5
- else:
- number_k = int(size/(2.0*lattice))
- number_j = int(size/(2.0*lattice))
- number_i = int(size/(2.0*lattice))
-
-
- for k in range(-number_k,number_k+1):
- for j in range(-number_j,number_j+1):
- for i in range(-number_i,number_i+1):
-
- atom = Vector((float(i),float(j),float(k))) * lattice
-
- if ctype == "sphere_square":
- message = vec_in_sphere(atom, size, skin)
- elif ctype == "pyramide_square":
- message = vec_in_pyramide_square(atom, size, skin)
- elif ctype == "parabolid_square":
- # size = height, skin = diameter
- message = vec_in_parabole(atom, size, skin)
- elif ctype == "octahedron":
- message = vec_in_octahedron(atom, size, skin)
- elif ctype == "truncated_octahedron":
- message = vec_in_truncated_octahedron(atom,size, skin)
-
- if message[0] == True and message[1] == True:
- atom_add = CLASS_atom_cluster_atom(atom)
- ATOM_CLUSTER_ALL_ATOMS.append(atom_add)
- atom_number_total += 1
- atom_number_drawn += 1
- if message[0] == True and message[1] == False:
- atom_number_total += 1
-
- print("Atom positions calculated")
-
- return (atom_number_total, atom_number_drawn)
-
-
-
- # -----------------------------------------------------------------------------
- # Routine for the icosahedron
-
-
- # Note that the icosahedron needs a special treatment since it requires a
- # non-common crystal lattice. The faces are (111) facets and the geometry
- # is five-fold. So far, a max size of 8217 atoms can be chosen.
- # More details about icosahedron shaped clusters can be found in:
- #
- # 1. C. Mottet, G. Tréglia, B. Legrand, Surface Science 383 (1997) L719-L727
- # 2. C. R. Henry, Surface Science Reports 31 (1998) 231-325
-
- # The following code is a translation from an existing Fortran code into Python.
- # The Fortran code has been created by Christine Mottet and translated by me
- # (Clemens Barth).
-
- # Although a couple of code lines are non-typical for Python, it is best to
- # leave the code as is.
- #
- # To do:
- #
- # 1. Unlimited cluster size
- # 2. Skin effect
-
- def create_icosahedron(size, lattice):
-
- natot = int(1 + (10*size*size+15*size+11)*size/3)
-
- x = list(range(natot+1))
- y = list(range(natot+1))
- z = list(range(natot+1))
-
- xs = list(range(12+1))
- ys = list(range(12+1))
- zs = list(range(12+1))
-
- xa = [[[ [] for i in range(12+1)] for j in range(12+1)] for k in range(20+1)]
- ya = [[[ [] for i in range(12+1)] for j in range(12+1)] for k in range(20+1)]
- za = [[[ [] for i in range(12+1)] for j in range(12+1)] for k in range(20+1)]
-
- naret = [[ [] for i in range(12+1)] for j in range(12+1)]
- nfacet = [[[ [] for i in range(12+1)] for j in range(12+1)] for k in range(12+1)]
-
- rac2 = sqrt(2.0)
- rac5 = sqrt(5.0)
- tdef = (rac5+1.0)/2.0
-
- rapp = sqrt(2.0*(1.0-tdef/(tdef*tdef+1.0)))
- nats = 2 * (5*size*size+1)
- nat = 13
- epsi = 0.01
-
- x[1] = 0.0
- y[1] = 0.0
- z[1] = 0.0
-
- for i in range(2, 5+1):
- z[i] = 0.0
- y[i+4] = 0.0
- x[i+8] = 0.0
-
- for i in range(2, 3+1):
- x[i] = tdef
- x[i+2] = -tdef
- x[i+4] = 1.0
- x[i+6] = -1.0
- y[i+8] = tdef
- y[i+10] = -tdef
-
- for i in range(2, 4+1, 2):
- y[i] = 1.0
- y[i+1] = -1.0
- z[i+4] = tdef
- z[i+5] = -tdef
- z[i+8] = 1.0
- z[i+9] = -1.0
-
- xdef = rac2 / sqrt(tdef * tdef + 1)
-
- for i in range(2, 13+1):
- x[i] = x[i] * xdef / 2.0
- y[i] = y[i] * xdef / 2.0
- z[i] = z[i] * xdef / 2.0
-
- if size > 1:
-
- for n in range (2, size+1):
- ifacet = 0
- iaret = 0
- inatf = 0
- for i in range(1, 12+1):
- for j in range(1, 12+1):
- naret[i][j] = 0
- for k in range (1, 12+1):
- nfacet[i][j][k] = 0
-
- nl1 = 6
- nl2 = 8
- nl3 = 9
- k1 = 0
- k2 = 0
- k3 = 0
- k12 = 0
- for i in range(1, 12+1):
- nat += 1
- xs[i] = n * x[i+1]
- ys[i] = n * y[i+1]
- zs[i] = n * z[i+1]
- x[nat] = xs[i]
- y[nat] = ys[i]
- z[nat] = zs[i]
- k1 += 1
-
- for i in range(1, 12+1):
- for j in range(2, 12+1):
- if j <= i:
- continue
-
- xij = xs[j] - xs[i]
- yij = ys[j] - ys[i]
- zij = zs[j] - zs[i]
- xij2 = xij * xij
- yij2 = yij * yij
- zij2 = zij * zij
- dij2 = xij2 + yij2 + zij2
- dssn = n * rapp / rac2
- dssn2 = dssn * dssn
- diffij = abs(dij2-dssn2)
- if diffij >= epsi:
- continue
-
- for k in range(3, 12+1):
- if k <= j:
- continue
-
- xjk = xs[k] - xs[j]
- yjk = ys[k] - ys[j]
- zjk = zs[k] - zs[j]
- xjk2 = xjk * xjk
- yjk2 = yjk * yjk
- zjk2 = zjk * zjk
- djk2 = xjk2 + yjk2 + zjk2
- diffjk = abs(djk2-dssn2)
- if diffjk >= epsi:
- continue
-
- xik = xs[k] - xs[i]
- yik = ys[k] - ys[i]
- zik = zs[k] - zs[i]
- xik2 = xik * xik
- yik2 = yik * yik
- zik2 = zik * zik
- dik2 = xik2 + yik2 + zik2
- diffik = abs(dik2-dssn2)
- if diffik >= epsi:
- continue
-
- if nfacet[i][j][k] != 0:
- continue
-
- ifacet += 1
- nfacet[i][j][k] = ifacet
-
- if naret[i][j] == 0:
- iaret += 1
- naret[i][j] = iaret
- for l in range(1,n-1+1):
- nat += 1
- xa[i][j][l] = xs[i]+l*(xs[j]-xs[i]) / n
- ya[i][j][l] = ys[i]+l*(ys[j]-ys[i]) / n
- za[i][j][l] = zs[i]+l*(zs[j]-zs[i]) / n
- x[nat] = xa[i][j][l]
- y[nat] = ya[i][j][l]
- z[nat] = za[i][j][l]
-
- if naret[i][k] == 0:
- iaret += 1
- naret[i][k] = iaret
- for l in range(1, n-1+1):
- nat += 1
- xa[i][k][l] = xs[i]+l*(xs[k]-xs[i]) / n
- ya[i][k][l] = ys[i]+l*(ys[k]-ys[i]) / n
- za[i][k][l] = zs[i]+l*(zs[k]-zs[i]) / n
- x[nat] = xa[i][k][l]
- y[nat] = ya[i][k][l]
- z[nat] = za[i][k][l]
-
- if naret[j][k] == 0:
- iaret += 1
- naret[j][k] = iaret
- for l in range(1, n-1+1):
- nat += 1
- xa[j][k][l] = xs[j]+l*(xs[k]-xs[j]) / n
- ya[j][k][l] = ys[j]+l*(ys[k]-ys[j]) / n
- za[j][k][l] = zs[j]+l*(zs[k]-zs[j]) / n
- x[nat] = xa[j][k][l]
- y[nat] = ya[j][k][l]
- z[nat] = za[j][k][l]
-
- for l in range(2, n-1+1):
- for ll in range(1, l-1+1):
- xf = xa[i][j][l]+ll*(xa[i][k][l]-xa[i][j][l]) / l
- yf = ya[i][j][l]+ll*(ya[i][k][l]-ya[i][j][l]) / l
- zf = za[i][j][l]+ll*(za[i][k][l]-za[i][j][l]) / l
- nat += 1
- inatf += 1
- x[nat] = xf
- y[nat] = yf
- z[nat] = zf
- k3 += 1
-
- atom_number_total = 0
- atom_number_drawn = 0
-
- for i in range (1,natot+1):
-
- atom = Vector((x[i],y[i],z[i])) * lattice
-
- atom_add = CLASS_atom_cluster_atom(atom)
- ATOM_CLUSTER_ALL_ATOMS.append(atom_add)
- atom_number_total += 1
- atom_number_drawn += 1
-
- return (atom_number_total, atom_number_drawn)
|